Showing posts with label biomarkers journal impact factor. Show all posts
Showing posts with label biomarkers journal impact factor. Show all posts

Wednesday, 16 November 2016

The Use of Molecular and Imaging Biomarkers in Lung Cancer Risk Prediction

In hypothesis testing, p-value is routinely used as a measure of statistical evidence against the null hypothesis, where a smaller p-value indicates stronger evidence substantiating the alternative hypothesis. P-value is the probability of type-I error made in a hypothesis testing, namely, the chance that one falsely reject the null hypothesis when the null holds true. 


Imaging Biomarkers in Lung Cancer
In a disease genome wide association study (GWAS), p-value potentially tells us how likely a putative disease associated variant is due to random chance. For a long time p-values have been taken seriously by the GWAS community as a safeguard against false positives. Every disease-associated mutation reported in a GWAS must reach a stringent p-value cutoff (e.g., 10-8) in order to survive the multiple testing corrections. This is reasonable because after testing millions of variants in the genome, some random variants ought to yield small p-values purely by chance.